

Plans for $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$

David G. Phillips II
KTeV Collaboration Meeting
May 13, 2006

Table of Contents

1) Introduction and Motivation for Studying

```
K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^- (note: have not yet considered K_L \rightarrow \pi^0 \mu^+ \mu^-)
```

- 2) Previous Studies
 - ~ summary of theorist brainstorming
 - ~ quick overview of previous KTeV work
- 3) Plan for Proceeding -> Analysis Strategy!

Introduction & Motivation

- switched thesis topic from $K_L \rightarrow \gamma \gamma$ to $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ in March 2006. (note: have collected data & papers for $K_L \rightarrow \pi^0 \mu^+ \mu^-$)
- preliminary KTeV study on $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ performed by Leo Bellantoni (see December 2005 writeup.)
- currently, there's no published calculation inside the Standard Model for $Br(\mathbf{K}_{\mathbf{L}} \to \pi^0 \pi^0 \mu^+ \mu^-)$, although the decay is possible via γ^* .
- however, HyperCP reports a 'potential' new neutral boson X^0 observed via $\Sigma^{\dagger} \rightarrow p X^0 \rightarrow p \mu^{\dagger} \mu^{-}$. They determined the following branching ratios:

$$Br(\Sigma^{\dagger} \to p\mu^{+}\mu^{-}) = (8.6^{+6.6}_{-5.4}(stat) \pm 5.5(syst)) \times 10^{-8}, Br(\Sigma^{\dagger} \to pX^{0} \to p\mu^{+}\mu^{-}) = (3.1^{+2.4}_{-1.9}(stat) \pm 1.5(syst)) \times 10^{-8}$$

- two groups (Valencia *et al.* and Deshpande *et al.*) have recently computed $Br(\mathbf{K}_{\mathbf{L}} \to \pi^{0}\pi^{0}X^{0} \to \pi^{0}\pi^{0}\mu^{+}\mu^{-})$ in a phenomenological fashion.

Previous Studies

~Theorist Brainstorming~

- Valencia *et al.* and Deshpande *et al.* calculate $Br(K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-)$ following observations made by HyperCP; that is, they assume that the X^0 's have small widths, are short lived and do not interact strongly.
- Deshpande *et al.* estimates contraints on scalar and pseudoscalar X^0 's.
- finding that pseudoscalar couplings have the largest contribution, they evaluate the branching ratio as:

$$Br(\mathbf{K_L} \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-) = 8.02 \times 10^{-9}$$
 (Deshpande et al., 2005)

- Valencia *et al.* take things a step further and consider scalar, pseudoscalar, vector and axial vector particle possibilities for the X^0 state.
- the decay $K^+ \to \pi^+ \mu^+ \mu^-$ places serious constraints on scalar and vector particle possibilities. The branching ratio for $K^+ \to \pi^+ \mu^+ \mu^-$ has been measured to be:

$$Br[K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}] = (8.1 \pm 1.4) \times 10^{-8}$$
 (PDG, 2004)

- combining the upper result with constraints on scalar and vector couplings, Valencia et al. calculates theoretical upper limits on $Br(\Sigma^{\dagger} \to pX^{0} \to p\mu^{+}\mu^{-})$:

$$Br(\Sigma^{\dagger} \to pX^{0}_{S} \to p\mu^{+}\mu^{-}) < 6x10^{-11}, \quad Br(\Sigma^{\dagger} \to pX^{0}_{V} \to p\mu^{+}\mu^{-}) < 3x10^{-11}$$

- the above upper limits effectively eliminate both scalar and vector particles as explanations of the HyperCP result.

- they then use existing constraints on pseudoscalar or axial vector X^0 's to predict the pseudoscalar and axial vector X^0 contributions to the $K_L \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ decay mode:

$$Br(\mathbf{K_L} \to \pi^0 \pi^0 X^0_{p} \to \pi^0 \pi^0 \mu^+ \mu^-) = (8.3^{+7.5}_{-6.6}) x 10^{-9}$$

$$(Valencia\ et\ al.,\ 2005)$$

$$Br(\mathbf{K_L} \to \pi^0 \pi^0 X^0_{A} \to \pi^0 \pi^0 \mu^+ \mu^-) = (1.0^{+0.9}_{-0.8}) x 10^{-10}$$

- there is no current *experimental* upper limit on $K_L \to \pi^0 \pi^0 \mu^+ \mu^-$ or $K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-$.

Previous Studies

~Leo's Bag O' Tricks~

- the data used in Leo's study was from trigger 5 of the 1997 KTeV E799 run.
- results from his analysis include:

~acceptance of 2.73% \rightarrow single event sensitivity of 1.4 $\times 10^{-10}$

~signal of less than 2.3 events

90% C.L. y

- ~partial width for 'new physics' estimated to be $< 4.0 \, x 10^{-24} \, MeV$
- ~dismissal of the claim of a new neutral boson by HyperCP.

- the aforementioned analysis does however have some potential shortcomings that need to be addressed, such as the following:
 - ~identification and estimation of background.
 - ~selection and completion of a normalization analysis.
 - ~systematics in the sensitivity!
 - ~usage of a constant matrix element in the $K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-$ MC generation.

$K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$ Analysis Strategy

-Data Selection-

- the data to be used in this study will be from trigger 5 of the 1997 (1999 later on) KTeV E799 run
- looks like Leo used the NZL tapes (001-066 for winter data, 067-130 for summer data) for his crunch...these comprise runs 8028-10978.
- some other decays available from trigger 5 are: $K_L \to \pi^0 \pi^0 \mu^+ \mu^-$, $K_L \to \pi^0 \mu^+ \mu^-$ and $K_L \to \mu^+ \mu^- \gamma \gamma$.
- still thinking about which *normalization* mode to choose for $K_L \rightarrow \pi^0 \pi^0 X^0 \rightarrow \pi^0 \pi^0 \mu^+ \mu^-$.

2V = 2 hits in V view and 1 hit in V' view OR 2 hits in V' and 1 hit in V.

DC12 = at least 1 DCOR hit in each view of DC1 and DC2.

2MU3 = 2 or more hits in the X and Y views of MU3.

<u>PHVBAR1</u>: this is a veto on all RC's (except RC8), all SA's and the CIA. Specifically, this rejects events that deposit ≥ 500 MeVin the RC's and ≥ 400 MeV in the SA's and the CIA.

<u>2HCY_LOOSE</u>: 2+ hits in every y view of the drift chambers (by the hit counting module); however, a missing hit is allowed in the y view of chamber 1 *OR* chamber 2.

 HCC_GE1 : ≥ 1 hardware cluster.

Future Plans

- HyperCP uses a uniform matrix element for $\Sigma^+ \to p X^0 \to p \mu^+ \mu^-$. This would not be advisable for $K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-$ since the K_L decay is momentum dependent.
 - → must ensure that we use the correct matrix element in the MC generation!!!
- luckily, *Deshpande et al.* gives the matrix element for $K_L \to \pi^+ \pi^- X^0 \to \pi^+ \pi^- \mu^+ \mu^-$ (albeit for a pseudoscalar X^0)
- meanwhile, *Valencia et al.* provides the matrix element for the decay K^0 bar $\to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-$ (for both pseudoscalar and axial vector X^0 's)
- with the tools listed above, we should be able to construct a suitable matrix element for $K_L \to \pi^0 \pi^0 X^0 \to \pi^0 \pi^0 \mu^+ \mu^-$ and begin MC generation!

- in short, this analysis is being started from scratch and I will be analyzing the data *with the box closed* and with my own cuts.
- still need to decide on my *backgrounds*, then begin generating...the *background* would be at the edge of phase space.